|
|
static auto & | get_grand_product_polynomial (auto &in) |
| |
|
static auto & | get_shifted_grand_product_polynomial (auto &in) |
| |
|
template<typename Accumulator , typename AllEntities , typename Parameters > |
| static Accumulator | compute_grand_product_numerator (const AllEntities &in, const Parameters ¶ms) |
| |
|
template<typename Accumulator , typename AllEntities , typename Parameters > |
| static Accumulator | compute_grand_product_denominator (const AllEntities &in, const Parameters ¶ms) |
| |
| template<typename ContainerOverSubrelations , typename AllEntities , typename Parameters > |
| static void | accumulate (ContainerOverSubrelations &accumulators, const AllEntities &in, const Parameters ¶ms, const FF &scaling_factor) |
| | Compute contribution of the goblin translator permutation relation for a given edge (internal function)
|
| |
◆ accumulate()
template<typename FF >
template<typename ContainerOverSubrelations , typename AllEntities , typename Parameters >
Compute contribution of the goblin translator permutation relation for a given edge (internal function)
There are 2 relations associated with enforcing the set permutation relation This file handles the relation that confirms faithful calculation of the grand product polynomial Z_perm.
C(in(X)...) = ( z_perm(X) + lagrange_first(X) )*P(X)
- ( z_perm_shift(X) + lagrange_last(X))*Q(X), where P(X) = Prod_{i=0:4} numerator_polynomial_i(X) + γ Q(X) = Prod_{i=0:4} ordered_range_constraint_i(X) + γ the first 4 numerator polynomials are concatenated range constraint polynomials and the last one is the constant extra numerator
- Parameters
-
| evals | transformed to evals + C(in(X)...)*scaling_factor |
| in | an std::array containing the fully extended Univariate edges. |
| parameters | contains beta, gamma, and public_input_delta, .... |
| scaling_factor | optional term to scale the evaluation before adding to evals. |
There are 2 relations associated with enforcing the set permutation relation This file handles the relation that confirms faithful calculation of the grand product polynomial Z_perm.
C(in(X)...) = ( z_perm(X) + lagrange_first(X) )*P(X)
- ( z_perm_shift(X) + lagrange_last(X))*Q(X), where P(X) = Prod_{i=0:4} numerator_polynomial_i(X) + γ Q(X) = Prod_{i=0:4} ordered_range_constraint_i(X) + γ the first 4 numerator polynomials are concatenated range constraint polynomials and the last one is the constant extra numerator
- Parameters
-
| evals | transformed to evals + C(in(X)...)*scaling_factor |
| in | an std::array containing the fully extended Univariate edges. |
| parameters | contains beta, gamma, and public_input_delta, .... |
| scaling_factor | optional term to scale the evaluation before adding to evals. |
◆ SUBRELATION_PARTIAL_LENGTHS
The documentation for this class was generated from the following files: