barretenberg
Loading...
Searching...
No Matches
Static Public Member Functions | List of all members
proof_system::honk::pcs::ipa::IPA< Curve > Class Template Reference

Static Public Member Functions

static void compute_opening_proof (const std::shared_ptr< CK > &ck, const OpeningPair< Curve > &opening_pair, const Polynomial &polynomial, const std::shared_ptr< BaseTranscript > &transcript)
 Compute an inner product argument proof for opening a single polynomial at a single evaluation point.
 
static bool verify (const std::shared_ptr< VK > &vk, const OpeningClaim< Curve > &opening_claim, const std::shared_ptr< BaseTranscript > &transcript)
 Verify the correctness of a Proof.
 

Member Function Documentation

◆ compute_opening_proof()

template<typename Curve >
static void proof_system::honk::pcs::ipa::IPA< Curve >::compute_opening_proof ( const std::shared_ptr< CK > &  ck,
const OpeningPair< Curve > &  opening_pair,
const Polynomial polynomial,
const std::shared_ptr< BaseTranscript > &  transcript 
)
inlinestatic

Compute an inner product argument proof for opening a single polynomial at a single evaluation point.

Parameters
ckThe commitment key containing srs and pippenger_runtime_state for computing MSM
opening_pair(challenge, evaluation)
polynomialThe witness polynomial whose opening proof needs to be computed
transcriptProver transcript https://github.com/AztecProtocol/aztec-packages/pull/3434

◆ verify()

template<typename Curve >
static bool proof_system::honk::pcs::ipa::IPA< Curve >::verify ( const std::shared_ptr< VK > &  vk,
const OpeningClaim< Curve > &  opening_claim,
const std::shared_ptr< BaseTranscript > &  transcript 
)
inlinestatic

Verify the correctness of a Proof.

Parameters
vkVerification_key containing srs and pippenger_runtime_state to be used for MSM
proofThe proof containg L_vec, R_vec and a_zero
pub_inputData required to verify the proof
Returns
true/false depending on if the proof verifies

Compute b_zero where b_zero can be computed using the polynomial:

g(X) = ∏_{i ∈ [k]} (u_{k-i}^{-1} + u_{k-i}.X^{2^{i-1}}).

b_zero = g(evaluation) = ∏_{i ∈ [k]} (u_{k-i}^{-1} + u_{k-i}. (evaluation)^{2^{i-1}})


The documentation for this class was generated from the following file: